Hydrogen Production from Selected Kerosine Components by Partial Catalytic Dehydrogenation

نویسندگان

  • K. Pearson
  • G. Kraaij
  • A. Wörner
چکیده

The providing and storage of hydrogen for efficient fuel cell systems is an on-going challenge. The partial catalytic dehydrogenation (PCD) of liquid fuels can provide stationary or mobile fuel cell systems with hydrogen. Through PCD, liquid fuels can be treated as hydrogen storage as well as an energy provider for combustion processes. It is also an alternative to the common reforming processes where the fuel is converted with steam into a hydrogen rich product gas with coproducts like carbon monoxide and carbon dioxide that requires CO clean-up before feeding into a proton exchange membrane fuel cell. The direct dehydrogenation on a catalyst can provide a hydrogen product gas of high purity (95 vol-%) without carbon monoxide or carbon dioxide. The hydrogen is partly removed and the fuel is not completely transformed into a gaseous product. Therefore the partial dehydrogenated fuel can be used for further processes. At the Institute of Technical Thermodynamics of the German Aerospace Centre, a test rig was built for the PCD of kerosene, to investigate the product gas quality, the by-products, and hydrogen yield. A big challenge for PCD catalyst is the sulphur content, on average 500 ppmw, of kerosene [1]. To remove sulphur components from kerosene, thermal fractionation by rectification is suitable based on the boiling range of kerosene. The process concept for the PCD with fuel cell system includes the desulphurization of kerosene or the use of desulphurized kerosene (DK) (3ppmw sulphur).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Study of Upgrading Catalytic Reforming Unit by Improving Catalyst Regeneration Process to Enhance Aromatic Compounds, Hydrogen Production, and Hydrogen Purity

Catalytic reforming is a chemical process utilized in petroleum refineries to convert naphtha, typically having low octane ratings, into high octane liquid products, called reformates, which are components of high octane gasoline. In this study, a mathematical model was developed for simulation of semi-regenerative catalytic reforming unit and the result of the proposed model was compared with ...

متن کامل

Reactor modeling and kinetic parameters estimation for diethylbenzene (DEB) dehydrogenation reactions

Divinylbenzene (DVB) is produced by catalytic dehydrogenation of DEB at high temperature and atmospheric pressure. Ethylvinylbenzene (EVB) is produced as a useful chemical during dehydrogenation of DEB. Also some other liquid and gaseous by products is produced during dehydrogenation. A set-up has been developed to conduct the DEB dehydrogenation reactions experiments to prepare DVB at differen...

متن کامل

Modeling of Ethylbenzene Dehydrogenation Membrane Reactor to Investigate the Potential Application of a Microporous Hydroxy Sodalite Membrane

In this study the catalytic dehydrogenation of ethylbenzene to styrene was investigated in a simulated tubular sodalite membrane reactor. The high quality microporous sodalite membrane was synthesized by direct hydrothermal method and characterized by single gas permeation measurements. The performance of the prepared membrane showed high potential for application in a dehydrogenation membrane ...

متن کامل

Production of COx-free hydrogen for fuel cells via step-wise hydrocarbon reforming and catalytic dehydrogenation of ammonia

The stringent COx-free hydrogen requirement for the current low temperature fuel cells has motivated the development of COx-free hydrogen production alternatives to the conventional hydrogen production technologies. Recently, our group has investigated step-wise reforming of hydrocarbons and catalytic decomposition of ammonia for COx-free production of hydrogen. These investigations have employ...

متن کامل

Feasibility of Coupling Dehydrogenation of Ethylbenzene with Hydrogenation of Nitrobenzene in an Autothermal Catalytic Membrane Reactor: Modeling Study

The coupling of reactions in catalytic membrane reactors provides novel reactor configurations that allow shifting the thermodynamic equilibrium and yields of thermodynamically limited reactions and enhancing significantly the rate of production. An interesting pair to couple is the dehydrogenation of ethylbenzene to styrene and the hydrogenation of nitrobenzene to aniline. Hydrogen produced in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013